196 research outputs found

    Switching of both local ferroelectric and magnetic domains in multiferroic Bi0.9La0.1FeO3 thin film by mechanical force

    Get PDF
    Cross-coupling of ordering parameters in multiferroic materials by multiple external stimuli other than electric field and magnetic field is highly desirable from both practical application and fundamental study points of view. Recently, mechanical force has attracted great attention in switching of ferroic ordering parameters via electro-elastic coupling in ferroelectric materials. In this work, mechanical force induced polarization and magnetization switching were investigated in a polycrystalline multiferroic Bi0.9La0.1FeO3 thin film using a scanning probe microscopy system. The piezoresponse force microscopy and magnetic force microscopy responses suggest that both the ferroelectric domains and the magnetic domains in Bi0.9La0.1FeO3 film could be switched by mechanical force as well as electric field. High strain gradient created by mechanical force is demonstrated as able to induce ferroelastic switching and thus induce both ferroelectric dipole and magnetic spin flipping in our thin film, as a consequence of electro-elastic coupling and magneto-electric coupling. The demonstration of mechanical force control of both the ferroelectric and the magnetic domains at room temperature provides a new freedom for manipulation of multiferroics and could result in devices with novel functionalities

    Hydro-micromechanical modeling of wave propagation in saturated granular media

    Get PDF
    Biot's theory predicts the wave velocities of a saturated poroelastic granular medium from the elastic properties, density and geometry of its dry solid matrix and the pore fluid, neglecting the interaction between constituent particles and local flow. However, when the frequencies become high and the wavelengths comparable with particle size, the details of the microstructure start to play an important role. Here, a novel hydro-micromechanical numerical model is proposed by coupling the lattice Boltzmann method (LBM) with the discrete element method (DEM. The model allows to investigate the details of the particle-fluid interaction during propagation of elastic waves While the DEM is tracking the translational and rotational motion of each solid particle, the LBM can resolve the pore-scale hydrodynamics. Solid and fluid phases are two-way coupled through momentum exchange. The coupling scheme is benchmarked with the terminal velocity of a single sphere settling in a fluid. To mimic a pressure wave entering a saturated granular medium, an oscillating pressure boundary condition on the fluid is implemented and benchmarked with one-dimensional wave equations. Using a face centered cubic structure, the effects of input waveforms and frequencies on the dispersion relations are investigated. Finally, the wave velocities at various effective confining pressures predicted by the numerical model are compared with with Biot's analytical solution, and a very good agreement is found. In addition to the pressure and shear waves, slow compressional waves are observed in the simulations, as predicted by Biot's theory.Comment: Manuscript submitted to International Journal for Numerical and Analytical Methods in Geomechanic

    マルチスケール手法によるジオテキスタイル補強地盤の特性評価

    Get PDF
    広島大学(Hiroshima University)博士(工学)Doctor of Engineeringdoctora
    corecore